Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 83: 101915, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38492844

RESUMO

OBJECTIVE: The glucose-dependent insulinotropic polypeptide (GIP) decreases body weight via central GIP receptor (GIPR) signaling, but the underlying mechanisms remain largely unknown. Here, we assessed whether GIP regulates body weight and glucose control via GIPR signaling in cells that express the leptin receptor (Lepr). METHODS: Hypothalamic, hindbrain, and pancreatic co-expression of Gipr and Lepr was assessed using single cell RNAseq analysis. Mice with deletion of Gipr in Lepr cells were generated and metabolically characterized for alterations in diet-induced obesity (DIO), glucose control and leptin sensitivity. Long-acting single- and dual-agonists at GIPR and GLP-1R were further used to assess drug effects on energy and glucose metabolism in DIO wildtype (WT) and Lepr-Gipr knock-out (KO) mice. RESULTS: Gipr and Lepr show strong co-expression in the pancreas, but not in the hypothalamus and hindbrain. DIO Lepr-Gipr KO mice are indistinguishable from WT controls related to body weight, food intake and diet-induced leptin resistance. Acyl-GIP and the GIPR:GLP-1R co-agonist MAR709 remain fully efficacious to decrease body weight and food intake in DIO Lepr-Gipr KO mice. Consistent with the demonstration that Gipr and Lepr highly co-localize in the endocrine pancreas, including the ß-cells, we find the superior glycemic effect of GIPR:GLP-1R co-agonism over single GLP-1R agonism to vanish in Lepr-Gipr KO mice. CONCLUSIONS: GIPR signaling in cells/neurons that express the leptin receptor is not implicated in the control of body weight or food intake, but is of crucial importance for the superior glycemic effects of GIPR:GLP-1R co-agonism relative to single GLP-1R agonism.

2.
Mol Metab ; 79: 101853, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103636

RESUMO

OBJECTIVE: The consequences of mutations in genes associated with monogenic forms of diabetes on human pancreas development cannot be studied in a time-resolved fashion in vivo. More specifically, if recessive mutations in the insulin gene influence human pancreatic endocrine lineage formation is still an unresolved question. METHODS: To model the extremely reduced insulin levels in patients with recessive insulin gene mutations, we generated a novel knock-in H2B-Cherry reporter human induced pluripotent stem cell (iPSC) line expressing no insulin upon differentiation to stem cell-derived (SC-) ß cells in vitro. Differentiation of iPSCs into the pancreatic and endocrine lineage, combined with immunostaining, Western blotting and proteomics analysis phenotypically characterized the insulin gene deficiency in SC-islets. Furthermore, we leveraged FACS analysis and confocal microscopy to explore the impact of insulin shortage on human endocrine cell induction, composition, differentiation and proliferation. RESULTS: Interestingly, insulin-deficient SC-islets exhibited low insulin receptor (IR) signaling when stimulated with glucose but displayed increased IR sensitivity upon treatment with exogenous insulin. Furthermore, insulin shortage did not alter neurogenin-3 (NGN3)-mediated endocrine lineage induction. Nevertheless, lack of insulin skewed the SC-islet cell composition with an increased number in SC-ß cell formation at the expense of SC-α cells. Finally, insulin deficiency reduced the rate of SC-ß cell proliferation but had no impact on the expansion of SC-α cells. CONCLUSIONS: Using iPSC disease modelling, we provide first evidence of insulin function in human pancreatic endocrine lineage formation. These findings help to better understand the phenotypic impact of recessive insulin gene mutations during pancreas development and shed light on insulin gene function beside its physiological role in blood glucose regulation.


Assuntos
Células Endócrinas , Células-Tronco Pluripotentes Induzidas , Humanos , Insulina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/genética , Pâncreas/metabolismo , Insulina Regular Humana/metabolismo , Células Endócrinas/metabolismo
3.
Front Endocrinol (Lausanne) ; 14: 1286590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37955006

RESUMO

Introduction: The molecular programs regulating human pancreatic endocrine cell induction and fate allocation are not well deciphered. Here, we investigated the spatiotemporal expression pattern and the function of the neurogenic differentiation factor 2 (NEUROD2) during human endocrinogenesis. Methods: Using Crispr-Cas9 gene editing, we generated a reporter knock-in transcription factor (TF) knock-out human inducible pluripotent stem cell (iPSC) line in which the open reading frame of both NEUROD2 alleles are replaced by a nuclear histone 2B-Venus reporter (NEUROD2nVenus/nVenus). Results: We identified a transient expression of NEUROD2 mRNA and its nuclear Venus reporter activity at the stage of human endocrine progenitor formation in an iPSC differentiation model. This expression profile is similar to what was previously reported in mice, uncovering an evolutionarily conserved gene expression pattern of NEUROD2 during endocrinogenesis. In vitro differentiation of the generated homozygous NEUROD2nVenus/nVenus iPSC line towards human endocrine lineages uncovered no significant impact upon the loss of NEUROD2 on endocrine cell induction. Moreover, analysis of endocrine cell specification revealed no striking changes in the generation of insulin-producing b cells and glucagon-secreting a cells upon lack of NEUROD2. Discussion: Overall, our results suggest that NEUROD2 is expendable for human b cell formation in vitro.


Assuntos
Células Secretoras de Insulina , Neuropeptídeos , Humanos , Animais , Camundongos , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Pâncreas , Neuropeptídeos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
4.
Nat Commun ; 13(1): 4540, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927244

RESUMO

During pancreas development endocrine cells leave the ductal epithelium to form the islets of Langerhans, but the morphogenetic mechanisms are incompletely understood. Here, we identify the Ca2+-independent atypical Synaptotagmin-13 (Syt13) as a key regulator of endocrine cell egression and islet formation. We detect specific upregulation of the Syt13 gene and encoded protein in endocrine precursors and the respective lineage during islet formation. The Syt13 protein is localized to the apical membrane of endocrine precursors and to the front domain of egressing endocrine cells, marking a previously unidentified apical-basal to front-rear repolarization during endocrine precursor cell egression. Knockout of Syt13 impairs endocrine cell egression and skews the α-to-ß-cell ratio. Mechanistically, Syt13 is a vesicle trafficking protein, transported via the microtubule cytoskeleton, and interacts with phosphatidylinositol phospholipids for polarized localization. By internalizing a subset of plasma membrane proteins at the front domain, including α6ß4 integrins, Syt13 modulates cell-matrix adhesion and allows efficient endocrine cell egression. Altogether, these findings uncover an unexpected role for Syt13 as a morphogenetic driver of endocrinogenesis and islet formation.


Assuntos
Células Endócrinas , Ilhotas Pancreáticas , Integrinas , Morfogênese , Pâncreas , Sinaptotagminas/genética
5.
Nat Metab ; 4(8): 1071-1083, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35995995

RESUMO

Dual agonists activating the peroxisome proliferator-activated receptors alpha and gamma (PPARɑ/ɣ) have beneficial effects on glucose and lipid metabolism in patients with type 2 diabetes, but their development was discontinued due to potential adverse effects. Here we report the design and preclinical evaluation of a molecule that covalently links the PPARɑ/ɣ dual-agonist tesaglitazar to a GLP-1 receptor agonist (GLP-1RA) to allow for GLP-1R-dependent cellular delivery of tesaglitazar. GLP-1RA/tesaglitazar does not differ from the pharmacokinetically matched GLP-1RA in GLP-1R signalling, but shows GLP-1R-dependent PPARɣ-retinoic acid receptor heterodimerization and enhanced improvements of body weight, food intake and glucose metabolism relative to the GLP-1RA or tesaglitazar alone in obese male mice. The conjugate fails to affect body weight and glucose metabolism in GLP-1R knockout mice and shows preserved effects in obese mice at subthreshold doses for the GLP-1RA and tesaglitazar. Liquid chromatography-mass spectrometry-based proteomics identified PPAR regulated proteins in the hypothalamus that are acutely upregulated by GLP-1RA/tesaglitazar. Our data show that GLP-1RA/tesaglitazar improves glucose control with superior efficacy to the GLP-1RA or tesaglitazar alone and suggest that this conjugate might hold therapeutic value to acutely treat hyperglycaemia and insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , PPAR alfa , Alcanossulfonatos , Animais , Peso Corporal , Diabetes Mellitus Tipo 2/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glucose , Masculino , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , PPAR alfa/agonistas , PPAR alfa/uso terapêutico , Fenilpropionatos
6.
Mol Metab ; 49: 101188, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33582383

RESUMO

OBJECTIVE: Islets of Langerhans contain heterogeneous populations of insulin-producing ß-cells. Surface markers and respective antibodies for isolation, tracking, and analysis are urgently needed to study ß-cell heterogeneity and explore the mechanisms to harness the regenerative potential of immature ß-cells. METHODS: We performed single-cell mRNA profiling of early postnatal mouse islets and re-analyzed several single-cell mRNA sequencing datasets from mouse and human pancreas and islets. We used mouse primary islets, iPSC-derived endocrine cells, Min6 insulinoma, and human EndoC-ßH1 ß-cell lines and performed FAC sorting, Western blotting, and imaging to support and complement the findings from the data analyses. RESULTS: We found that all endocrine cell types expressed the cluster of differentiation 81 (CD81) during pancreas development, but the expression levels of this protein were gradually reduced in ß-cells during postnatal maturation. Single-cell gene expression profiling and high-resolution imaging revealed an immature signature of ß-cells expressing high levels of CD81 (CD81high) compared to a more mature population expressing no or low levels of this protein (CD81low/-). Analysis of ß-cells from different diabetic mouse models and in vitro ß-cell stress assays indicated an upregulation of CD81 expression levels in stressed and dedifferentiated ß-cells. Similarly, CD81 was upregulated and marked stressed human ß-cells in vitro. CONCLUSIONS: We identified CD81 as a novel surface marker that labels immature, stressed, and dedifferentiated ß-cells in the adult mouse and human islets. This novel surface marker will allow us to better study ß-cell heterogeneity in healthy subjects and diabetes progression.


Assuntos
Diferenciação Celular , Células Secretoras de Insulina/metabolismo , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus/metabolismo , Feminino , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Heterogeneidade Genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Pâncreas/metabolismo , RNA Mensageiro/metabolismo , Regulação para Cima
7.
Cells ; 9(1)2020 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-31940860

RESUMO

Osteoarthritis (OA) is a degenerative disease of the hyaline articular cartilage. This disease is progressive and may lead to disability. Researchers proposed many regenerative approaches to treat osteoarthritis, including stem cells. Trans-differentiation of a fully differentiated cell state directly into another different differentiated cell state avoids the disadvantages of fully reprogramming cells to induced pluripotent stem cells (iPSCs) in terms of faster reprogramming of the needed cells. Trans-differentiation also reduces the risk of tumor formation by avoiding the iPSC state. OSKM factors (Oct4, Sox2, Klf4, and cMyc) accompanied by the JAK-STAT pathway inhibition, followed by the introduction of specific differentiation factors, directly reprogrammed mouse embryonic fibroblasts to chondroblasts. Our results showed the absence of intermediate induced pluripotent stem cell formation. The resulting aggregates showed clear hyaline and hypertrophic cartilage. Tumor formation was absent in sub-cutaneous capsules transplanted in SCID mice.


Assuntos
Transdiferenciação Celular/efeitos dos fármacos , Reprogramação Celular , Condrócitos/citologia , Citocinas/farmacologia , Fibroblastos/citologia , Janus Quinases/antagonistas & inibidores , Animais , Biomarcadores/metabolismo , Osso e Ossos/metabolismo , Reprogramação Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrogênese/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glicosaminoglicanos/metabolismo , Cartilagem Hialina/efeitos dos fármacos , Cartilagem Hialina/metabolismo , Cartilagem Hialina/patologia , Hipertrofia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Janus Quinases/metabolismo , Cinética , Fator 4 Semelhante a Kruppel , Camundongos SCID , Modelos Biológicos , Inibidores de Proteínas Quinases/farmacologia , Fatores de Transcrição/metabolismo
8.
Int J Mol Sci ; 20(21)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671683

RESUMO

The exponential increase of patients with diabetes mellitus urges for novel therapeutic strategies to reduce the socioeconomic burden of this disease. The loss or dysfunction of insulin-producing ß-cells, in patients with type 1 and type 2 diabetes respectively, put these cells at the center of the disease initiation and progression. Therefore, major efforts have been taken to restore the ß-cell mass by cell-replacement or regeneration approaches. Implementing novel therapies requires deciphering the developmental mechanisms that generate ß-cells and determine the acquisition of their physiological phenotype. In this review, we summarize the current understanding of the mechanisms that coordinate the postnatal maturation of ß-cells and define their functional identity. Furthermore, we discuss different routes by which ß-cells lose their features and functionality in type 1 and 2 diabetic conditions. We then focus on potential mechanisms to restore the functionality of those ß-cell populations that have lost their functional phenotype. Finally, we discuss the recent progress and remaining challenges facing the generation of functional mature ß-cells from stem cells for cell-replacement therapy for diabetes treatment.


Assuntos
Diabetes Mellitus/terapia , Células Secretoras de Insulina/citologia , Diferenciação Celular , Transdiferenciação Celular , Diabetes Mellitus/metabolismo , Progressão da Doença , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/transplante , Fenótipo , Transdução de Sinais
9.
Science ; 328(5979): 753-6, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20448184

RESUMO

As the human life span increases, the number of people suffering from cognitive decline is rising dramatically. The mechanisms underlying age-associated memory impairment are, however, not understood. Here we show that memory disturbances in the aging brain of the mouse are associated with altered hippocampal chromatin plasticity. During learning, aged mice display a specific deregulation of histone H4 lysine 12 (H4K12) acetylation and fail to initiate a hippocampal gene expression program associated with memory consolidation. Restoration of physiological H4K12 acetylation reinstates the expression of learning-induced genes and leads to the recovery of cognitive abilities. Our data suggest that deregulated H4K12 acetylation may represent an early biomarker of an impaired genome-environment interaction in the aging mouse brain.


Assuntos
Envelhecimento/genética , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Hipocampo/metabolismo , Histonas/metabolismo , Transtornos da Memória/genética , Acetilação , Animais , Cromatina/metabolismo , Condicionamento Psicológico , Epigênese Genética , Medo , Forminas , Perfilação da Expressão Gênica , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Aprendizagem/efeitos dos fármacos , Lisina/metabolismo , Memória/efeitos dos fármacos , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transdução de Sinais , Sítio de Iniciação de Transcrição , Transcrição Gênica , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...